Probability basics

Carl Edward Rasmussen

June 23rd, 2016

Key Concepts

- probability basics
- Example: Medical diagnosis
- joint, conditional and marginal probabilities
- the two rules of probability: sum and product rules
- Bayes rule
- Bayesian inference and prediction with finite regression models
- likelihood and prior
- posterior and predictive distribution
- the marginal likelihood
- Bayesian model selection
- Example: How Bayes avoids overfitting

Medical inference (diagnosis)

Breast cancer facts:

- 1% of scanned women have breast cancer
- 80% of women with breast cancer get positive mammography scans
- 9.6% of women without breast cancer also get positive mammography scans Question: A woman gets a scan, and it is positive; what is the probability that she has breast cancer?
(1) less than 1%
(2) around 10%
(3) around 90\%
(4) more than 99%

Medical inference

Breast cancer facts:

- 1% of scanned women have breast cancer
- 80% of women with breast cancer get positive mammography scans
- 9.6% of women without breast cancer also get positive mammography scans Define: $\mathrm{C}=$ presence of breast cancer; $\overline{\mathrm{C}}=$ no breast cancer. $M=$ scan is positive; $\bar{M}=$ scan is negative.
The probability of cancer for scanned women is $p(C)=1 \%$ If there is cancer, the probability of a positive mammography is $p(M \mid C)=80 \%$ If there is no cancer, we still have $p(M \mid \bar{C})=9.6 \%$
The question is what is $p(C \mid M)$?

Medical inference

What is $\mathrm{p}(\mathrm{C} \mid \mathrm{M})$?
Consider 10000 subjects of screening

- $p(C)=1 \%$, therefore 100 of them have cancer, of which
- $p(M \mid C)=80 \%$, therefore 80 get a positive mammography
- 20 get a negative mammography
- $p(\bar{C})=99 \%$, therefore 9900 of them do not have cancer, of which
- $p(M \mid \bar{C})=9.6 \%$, therefore 950 get a positive mammography
- 8950 get a negative mammography

	M	\bar{M}
C	80	20
$\overline{\mathrm{C}}$	950	8950

What is $\mathrm{p}(\mathrm{C} \mid M)$?

	M	\bar{M}
C	80	20
\bar{C}	950	8950

$\mathrm{p}(\mathrm{C} \mid M)$ is obtained as the proportion of all positive mammographies for which there actually is breast cancer

$$
p(C \mid M)=\frac{p(C, M)}{p(C, M)+p(\bar{C}, M)}=\frac{p(C, M)}{p(M)}=\frac{80}{80+950} \simeq 7.8 \%
$$

This is an example of Bayes' rule:

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)} .
$$

Which is just a consequence of the definition of conditional probability

$$
p(A \mid B)=\frac{p(A, B)}{p(B)}, \quad(\text { where } p(B) \neq 0)
$$

Just two rules of probability theory

Astonishingly, the rich theory of probability can be derived using just two rules: The sum rule states that

$$
p(A)=\sum_{B} p(A, B), \quad \text { or } \quad p(A)=\int_{B} p(A, B) d B,
$$

for discrete and continuous variables. Sometimes called marginalization.
The product rule states that

$$
p(A, B)=p(A \mid B) p(B) .
$$

It follows directly from the definition of conditional probability, and leads directly to Bayes' rule

$$
p(A \mid B) p(B)=p(A, B)=p(B \mid A) p(A) \Rightarrow p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)} .
$$

Special case:
if A and B are independent, $p(A \mid B)=p(A)$, and thus $p(A, B)=p(A) p(B)$.

